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ABSTRACT

In this paper, we consider a new kind of free boundary problem related to
the investigation of the structure of discontinuous solutions of degenerate
quasilinear parabolic equations. A thorough treatment is given for the

following special cases:

2 m
du _ 3 u
E— 2 ( > 1) ’
Ix
ey =0
m
3—“—’ = ar'(t) ,
9x x=A{t)
(a < 0, R >0 - const.)
ulyep = 8 s

which can be reduced to a problem in ordinary differential equations with a

certain singularity.

AMS (MOS) Subject Classifications: 35K60, 35K65
Key Words: Degenerate quasilinear parabolic equations, Free boundary problem,
Discontinuous solutions, Jump conditions, Existence and

uniqueness, Structure of solutions

Work Unit Number 1 (Applied Analysis)
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SIGNIFICANCE AND EXPLANATION

This paper is concerned with a free boundary problem which arises in the

study of a class of degenerate parabolic equations. A thorough treatment is i
given for a special case which can be reduced to a problem in ordinary
differential equations upon introduction of the appropriate similarity

variable. Beyond its inherent interest, the solvability of the resulting

problem establishes that an analysis by Vol'’pert and Hudjaev of jump

conditions satisfied by solutions of degenerate parabolic equations is not

correct in general.
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A FREE BOUNDARY PROBLEM FOR DEGENERATE QUASILINEAR PARABOLIC EQUATIONS

Zhuoqun Wu

§1. Introduction
In this paper, we are concerned with a free boundary problem for gquasilinear

equations of the form

au _ 3%aw)

(1.1)
at ax2

with
A'(u) = a(u) > 0 .

Our problem arises, in particular, from the investigation of the structure of
discontinuous solutions of eguation (1.1). It is shown in [1] that discontinuity occurs
in a generalized solution only if there exists an interval (u1,u2) such that

a(u) = 0 for u € (ug,uy) .

Things are simple if the initial data
(1.2) uleog = upix)
happen to either fall in an interval where a(u) > 0 or fall in an interval where
a(u) = 0. wWhat we need to investigate is the case that af{ug(x)) > 0 for some x and
a(uy(x)) = 0 for some other x. The following situation seems to be typical:

a{u) = 0 for u <0 and af{u) >0 for u > 0
(1.3)

uo(x) <0 for x <0 and ug(x) > 0 for x > 0 .
In iais case, one could conjecture that the corresponding generalized solution u would
have a line of discontinuity x = A(t) with A'(t) < 0 starting from (0,0). The

question is: how does the discontinuity emerge and develop? To get an answer, we need to

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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make essential use of the jump conditions which the generalized solutions satisfy. In

{1], two jump conditions are presented, which are

(1.4) alu) = 0 for u e I(u ,uh)
and
(1.5) [sgn(ut - X) - sgn(u™ -~ X)1 (T - kv, € 0 for k €R

- +
+ -
lL——;Jl—, u”~ and u' denote the approximate limits at the points of

Jump, (Vt'vx) the normal to the set of points of jump and I(u‘,u+) the intervali with

for (1.1), where 1 =

endpoints u~  and . In particular, (1.5) implies
1.6) (' - uT, =0 v, =0
- =
(1. u t or t ’
which means that all of the normals to the set of points of jump are parallel to the x~
axis. Hence the line of discontinuity starting from (0,0), if any, should be a straight
line perpendicular to the x-axis. However, this assertion is not true in general; things

are not really so simple. The wrong assertion comes from the incorrect jump condition

(1.5). The correct form of this condition should be

(1.7) (sgn(u’ ~ k) ~ sgn(u” - X)) (T - k)vt - Q&%&l vx] <0 for ke€R
and
aat)y" | (daw),”
W -, - (MR- (A, -
or
ax . r(3Atu)y’ _ raamw)y”
+ . - =
(1.8) wh - T - () =0
where x denotes the slope of the tangent to the set of points of jump.

dat
Suppose (1.3) holds and x = A(t), where X'(t) < 0, is the line of discontinuity

of the corresponding generalized solution u(t,x)}. Then, since uo(x) <0 (x < ¢) and
a(u) = 0 (u < 0), we first have
u(t,x) = ug{x) for x < A(t) .
Secondly, from (1.4) it follows that
+
l

x=A(t) © 0.

K- —




2 rseny

A(u)

and hence, noticing that (1_3_;_ = 0, from (1.8) we get

) 'x=X(t)

9A(u) *

~ug (ALE)A(e) + (“‘a—x‘) =0 .

|x=k(t)

Thus (u{t,x),A(t)) is a solution of the free boundary probhlem for (1.1) with boundary

conditions

(1.9) ulx‘“t) =0,

(1.10) 3&;.:1 =y, (A (I (e,
x=A(t)

and the injitial condition

(1.11) uli_g = uplx) for x>0 .

We will prove the inverse in §2, namely, if (u(t,x),A(t)}) 1is a solution of the free
boundary (1.1), (1.9), (1.10), (1.11), then we can immediately obtain a generalized
solution of the initial value problem (1.1), (1.2) with x = A(t) as the line of
discontinuity.

The rest of this paper (§3-§5) is devoted to a detailed study of the special case:

Afu) =0 for u<0 and A(u) = u™ for ud> o0,
(1.12)

ua(x) =a <0 for x <0 and ug(x) = B>0 for x>0,
where m > 1 and a,8 are constants. The possibility, in this case, of reducing to a
problem in ordinary differential equations simplifies matters. The main results are
included in the theorem in §5.

By the way, since the proof of the uniqueness theorem in (1] is based on jump
conditions (for (1.1), they are (1.4), (1.5)) and one of them is not true in general, a
revision of the proof is required. We will derive the correct form of the jump condition
and complete the proof of uniqueness in another paper [2].

The author would like to thank Professor Michael Crandall for several interesting and

helpful discussions during the preparation of this paper.
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§2. Generalized Solutions of {(1.1), (1.2)
1 hd 1
Suppose A(u) € C (R), ug(x) € L (R} N C (R\{0}).
Proposition 1. If (u(t,x),A(t)) 1is a solution of the free boundary problem (1.1),
(1.9), (1.10), (1.11), then the function
u(t,x) for x > A(t)
wit,x) =
uo(x) for x < A(t)
is a generalized solution of the initial value problem (1.1), (1.2) with x = A(t) as the
line of discontinuity.
By a solution of the free boundary problem (1.1), (1.9), (1.10), (1.11), we mean a

pair of functions (u(t,x),A(t)), such that

(2.0 uwer @ n cE\o,0hnc"2@), 6={(t,x)5 0 ct T, x>A(t)},

(2.2) ]f | Idtdx, ff I—Eldtdx < +» for any bounded domain D with Bc & - {¢ = 0} ,
(2.3) 3u) & cdrc0,00))

(2.4) A(t) e c(0,TI N ! (o,7) ,

(2.5) At(t) <0

and (1.1), (1.9), (1.10), (1.11) are satisfied. Here C (G) denotes the class of
functions which are continuous on G with their first order derivative with respect to
t and their first and second order derivatives with respect to x.
Proof. We need to check all of the conditions in the definition of generalized
solutions given in [1].
L] o« o
Since u € L (G}, uy € L (R), we have w € L (0), where O = (0,T) x R. The

assumption u, € c'(n\(o}) and (2.2) imply that w € BV(Q). By BV(Q), we mean the

class of integrable functions on Q of locally bounded variation.
u
aR‘“) e Lloc(o) where R(u) = [ y(1)dt and Y(t) = a()?, we multiply
0
(1.1) by du with ¢ >0 and ¢ € C:(Q) and get

l

To prove

pu?

1
2 3t

3 2, 3 (4, 3wy _ 30 3atw)

1
2 3t ax dx Ix

du
* ¢a(u)( x) Ix Ix

-4-
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Integrating this relation over Ge = {(t,x) €G; x > A(t) +€, € > 0} {notice that u

need not be differentiable up to L : x = A(t)) vyields

2
ax + ” ¢a(u)(-g—:) dtdx

i 2 i 2, 17 2
=/ ¢u’| ax -~ [ ! ax - — [ éu”l
2 A (T)+€ t=T A(T)+e x=\(t)+E 2 ¢ t=0 Ge
(2.6)
T
1 3A 3 AA
=3 Jf 38 uZarax - [ ¢u22W av - [ 3% o 2MN) L,
G 0 x=A(t)+e G
€ €
Since 0, = 0, the first and third term of (2.6) are zero. By virtue of (1.9),

{(1.10), the second and sixth term tend to zero as € + 0. The fifth and seventh term are

bounded uniformly in €. Thus, letting € + 0, from (2.6) we get
3u 2
(2.7) /] satw)(33) atax < += .
G

Denote
3u
g - Y(u) = for x > A(t)
0 for x < A(t) .

2
Then by (2.7), g € Lf (D).

Clearly, for any ¢ e C;(O),

{] E%—:—) atax = [/ $gdtdax » [[ ¢gdtdx as
x=-A(t)]%e Jx=A(t)]2e Q

Integrating by parts gives

AR(w) 3
/ $ 2L aeax = - [f R(w)dtdx
{x-x(t)|<e ox x-A(t) e 2%
+ f dR(wIAt - [ éR(w)dt + 0
x=A(t)+€ x=A(t)-€
So
-5
T e, ™

€ > 0 .

ag € *+ 0 .




IR({w) dR(w)
_Uo—b—dtdx-{f +{/ ¢ 22X geax + [/ égatax .
o) x x=A(t)|<e x=A(t) |>e Ax o)
This means that 23%%1 =g e Lioc(Q).
Now we prove that w satisfies the integral inequality
(2.8) J(w,k,$) = ff sgn(w - k)[(w - k) %%~- gééil %%]dtdx >0 for k € R,
Q
b eco, s3>0 .
Divide J(w,k,$) into two parts:
) 3¢  IA(u) 3¢
Jiw,k,$) = [ sgn(ugy-k) (uy~k) 12 atdx + [/ sgn(u-k)[(u-k) = - 25— t]atax
XA () 0 0 it OA(E) at Ix 9x
(2.9)
= 31(\10'kl¢) + Jz(ulklo) .
Obviously
A(T) T 0 2" )
3 3
31(0011('@) - f '“0 - k|dx ! 5% dt + I luo - k'dx ! E% dat
- 0 A(T) 0
(2.10)
0 -1 T
= | luy - k16" "(x),x)ax = - | luo - k‘¢|x_“t)k (t)at ,
A(T) 0
(2.11) Jz(u,k,o) = lim len(u,k,O)
n+0+
where
3 3A(u) 3¢
3, (uk.$) = ff san_(u - k)[(u - k) 32 - 2Alw) 381,44,
2,n X3A(t) n It Ix Ix
1 for 1T >n
sgn_(1) = I for Tl < n
n n
-1 for T < -n .
We have
- - 38 2au) 3¢
aqnn(u k)[(u k) Ty X 3x]

) - ok By aant(u - K 2¥ -
-R(sgnn(u-k)(u-k)d’) sqnn(u x) az’ Sqnn(u k) TR k)

-6=
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2

2
a - dA(u) _ 9 A(u) ' du
3% (890, (8 = k) == 6) + sgn (u = k) ————axz + sgn) (u - k)““)(ﬁ] .
Since u sgatiafies (1.1) whenever x > A(t), we have
3 ] 3A(u)
I, (u,k,é) > ff (5 (san_(u - k)(u - X)¢) - 3= (8gn_(u = k) ¢)]atax
2,n OAE) 3t n Ix n Ix
-/ sgn (u - k) %% (u - k)ddtdx
x>A{t)
T T dA(u)
- (f, sgnpu - K)(u = KIO[ L,  at(erar + g sgn, (u = X) S5 ol ()9t
- [ sgn; (u = k) %‘E‘ (u - k)ddtax
x>Ai(t)
T T
- ' - ]
({ sgnn(k)kd’lx_”t)k (t)at g aqnn(k)uolx_“t)k (t)at
3u
-] sgn'(u - k) == (u ~ k)édtdx .
oAeE) " 3t
For any fixed € > 0, since u € C1(Ge)' we have
/! sqn'(u-k)g—:(u-k)wltdx*o as n+ 0 .
x>A(t)+e
By (2.2),
1/} sgn! (u = ¥) %% (u - K)datax| < [J 9132 atax > 0 as €+ 0 .
At)<x<h(t)+e A(t)<x<A(t)+e
Thus
j[ sgna(u - k) %% (u - k)pdtdx + 0 as N *+ 0
wWA(L)
and hence
T T
(2.12) lim 3, (u,k,8) > [ |x|é]| At(e)at - [ sgn(x)u | A'(e)de .
ne0+ 2,n o x=\(t) 0 0'x=A(t)

-7
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Combining (2.9)-(2.12) gives

T

Iw,k,8) > [ (=lug = k| + |k| - sgn(x) - upre! A'(t)at » 0
0

x=A(t)

since A'(t) < 0. This proves (2.8) and the proof of Proposition is complete.

-8-
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§3.

Estimates on the Similarity Solution
From now on we consider the special case (1.12)

problem becomes

. In this case, the free boundary

2 m

3u _ 3 u

(3.1) 'a—t - ) 2 ’
X
(3.2 Shema(ey 7 0
m

(3.3) %%— =al’(t) ,

x=A(t)
(3.4)

“‘t-o =8 .
We seek solutions of the form

(3.5) £ =

u = u(f),

X
t1/2

Then we arrive at a free boundary problem for an ordinary differential equation, namely:

(um)” = - % Eu' ,
ulp_e =90,
£=

m a
{u )'E'ED 3 EO

ule‘,'ﬁ .

Let
(3.6) v=y",
The problem for v(E) is
£ 2
m
(3.7} vt o= - = v v'
(3.8) lesEO =0,
-9-
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(3.9)

a
- E E

Ve "2 %0 ¢

(3.10) Vipww = 8" .
1
We seek solutions v € C [Eo,') 8] Cz(Eo.'), which are positive for £ > £,. We will
first solve (3.7), (3.8), (3.9) for any fixed Eo < 0 and then choose EO such that the

solution satisfies (3.10) as well.

Integrating (3.7) and using (3.8), (3.9) we get

1

aEO 1 £ -1
(3.11) vi(E) = — exp(~ =— | " (miar) ,
2 2m
EO
1
GEO (4 1 T -;‘ -1
(3.12) v(E) = = | exp(- o | sv (s)ds)dr .
£
0 0

If we write (3.7) as

1" 1°
v":--:-(vm) S-%(Evm] ""%V ’

Bla

integrate and use (3.8), (3.9), then we get

af 1 £ 1
(3.13) viE) = 2 - 2 Ev™E) + 5 [ vhmar
E0
1
at 13 -
(3.14) v(E) =2 (€ = E) + 2 [ (6 - 2mvNmar .
£
0

In order to solve (3.7), (3.8), (3.9), it suffices to solve the integral equation
(3.12) or (3.14) - to find a solution v € C[Eo,ﬂ) which is positive for £ > Eo. e
remark that the integrand in (3.14) is not singular at v = 0 in contrast to (3.12).

Before we discuss the solvability of (3.7), (3.8), (3.9), we first derive some

estimates on the solutions.

From (3.11) we see that v' 1is strictly increasing for Eo € £ < 0. In particular,
af

v' > - for £ < £ < 0 and hence
2 0

-10~-
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o~

an
(3,15} viE) > -5 (£ - EO) for {o < EgE<CO .,

Using (3.11), (3.15) we further obtain

1
ak . af, m -t ﬁ -1
vi(f) ¢ 5 pr[' o ! T(—z—) {r - EO) d“']

aby m ~ & = -1
< -3—-exp[ lEl) IEolm ] - Eo)m a)

1 %o
at, =t 2
8 1lal m
« 5 exp(3 (1) 11" for g c e <0,
or
aRE
(3.16) v'(f) « 2 for EO‘E<0 .
where
a2
1
(3.17) R = exp|3 (L;-'—) |z°|“] .
Hence
unlo
(3.18) v(g) < 3 (£ - Eo) for o< E <0,

Combining (3.18) with (3,15) gives

cco aREo
(3.19) < [ Eo) < v(E) < - (£ - EO) for o€ E< 0.
Next we prove that
(3.20) ﬂE)(aﬂo

whenever v(E) exista, Here M is a constant such that

1
_ -

RIE
2

a’Ii
Byt

o!

(3.21) + (m lal “ JE ) | exp(-nZyan)n™ < ¥,

0

let (EO,E') be the maximal existence interval of v(f£). If E‘ < 0, then (3.18)

implies (3.20). Suppose E‘ > 0 and there exists Ez > 0, 52 < £, such that

-11-
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(3.22) v(E) < GMEO for 0¢< & < 52 and v(Ez) =aMf, .

Then, we divide the right hand side of (3.12) into two parts:

1 1
af 1] T -_—-1 at £ T - -1
v(g) = —32 f exp(- %; ] av” (s)ds)dr + —32 f exp(- %— s (s)ds)dT
£ £ 0 il
[} 0 0
= 11 + 12
and estimate each of them. Using (3.15) we get
a0 v 2o RIE |
I, = _TD_ exp( - ;—m] sv'  (s)ds)dr < an 20 .
E0 E0
Using (3.15) and the first part of (3.22) we get for 0 < § < §,,
1
af & T -1
1, = =L | exp(- L | &™ (e)ds)ar
2 2m
(] £
0
af, £ - , T 2
= —2—1 exp(- ‘2-1;] sv (s)ds)exp(- T f sv (s)ds)d‘r
0 4 ™o
0 |
1
1
- -1 2 1
af m - & T ==
0 1 a 1 m
S = exp[i (-‘31) IEolm] £ exp{ - = {, sv (s)ds)ar i
1
af £ T = -1
0 1 m
<R | exp(- Ef s(aME ) as)dr
0 0 |
1
af E e |
0 1 m 2 '
= -5 Rg exp[ = (aMEo) T ]d't ;
|
1 1 !
af Y& - -1 - !
0 -1 1 2 |
= — Ry {’ exp(-82)as (v = ['Ei\' («!P‘lﬁo)“| %) .
1 m=1 m=1 m=1

A

- —— ——— -
Gﬁo(mzlalzm |E°|2m J exp(~s2)ds * w" ) .
0

Hence, by the choice of M (see (3.21))

.12

—— —— -




RIE,

3 exp(-lz)ds * M

+ Rm" o) 1€

v(&,) < af [

which contradicts the second part of (3.22).

Furthermore, using (3.11), (3.15) and (3.20) we get

af 1 -1

(3.23) viig) € 5 Rexp[- = (@M )™ £ for 0< g <k, .




§4. Existence for (3.7), (3.8), (3.9)

Now we prove

Proposition 2. The problem (3.7), (3.8), (3.9) has a solution
v e C'[Eo.') n CZ(EO.') and v(E) > 0 for £ > EO' Solutions of (3.7), (3.8), (3.9) are
unique and depend continuously on Eo <0 and a < 0.

Proof. First we prove the existence. By virtue of (3.20), (3.16) and (3.23), it
suffices to prove that (3.7), (3.8), (3.9) has a solution on Eo € E < 0 which is
positive except at § = §,.

Denote by M the class of functions v € C[Eo,Ol such that

0 <viE) <N for £ > &,
where N is a constant satisfying
1
-;- Ual + 3}1"‘)|Eol2 <N,
Clearly, M 1is a closed convex subset of c[Eo,Ol.

Consider the operator

[

af, £

W=t m—2 (£ -E )+ (& - 20v™D)ar . :
2 0 2 £ i
0

Por any veM, w=1vecC;0] and w=1v>0 except at £ = £y, Moreover

1
lo] 2 .3 2
weddb g 1® e g1 <
So weM. It is easy to see that TM is compact and T is continuous on M. Thus,
Schauder's fixed point theorem gives the existence of solutions to (3.14) and hence to
(3.7), (3.8), (3.9).

To prove the unigueness of solutions, let v4,v5 be two solutions of (3.7), (3.8),

(3.9), It suffices to prove that v = v4 - vy = 0 1in a neighborhood of EO' say

Eo E< EO + 68 with 6 > 0 sgmall.




From (3.14) we have

1 1
vi€) = 2/ (& - 200 - Vi
£ 2
0
) 5 1 -
--2-! (€ -21) » =¥v"  (Tivit)ar
E m

0

and hence from (3.15)

Ivi{t)}ar

for Co €g< 50 +68 .

where v{T) is a certain point between v,(1) and v2(1)
- kg
vi{t) > -—2— {t - Eo) .
Thus
% -1 1
£ af - -1
3 1 0 n
eyt < 5 1E1 [ (5 (=&
]
l -1 11
3 (laly" mem
<3 (-5—) lEOI s max Jv(E)]
£0<5<:°+6

It is impossible for & small enough, unless v 2 0 on £, < E < E, + s,

Finally, we prove the continucus dependence of solutions upon Eo < Q,

Denote by v(£iE,, )

the solution of (3.7), (3.8),

what we want to prove is that for any 51 > Eo and

§ > 0 such that

(3.9).

€ >0,

and a < 0.
Let Eo <0, a <0 be fixed.

there exists a constant

Ivtgig5,at) - v(EsE ,a)] <€, Iv'(E164,0") - viEiEgag)] <€

whenever |£6 - €o| <8, la* -af <8 and max(Ea.En) < E <L

Suppose it is not the case.

Then there exists

€

0

(n)

>0 and Eé").a‘").i such

that Eén) * Eo, u(n) +a (n=+=), max(Eén),Eo) < E(n) < 51, and

|v(E(n)1E;n’,u(")) - v(E(n)rEO.GO)I >€e or lv’(E(n)lﬁ

Suppose, for example, the case is the former:

(4.1)

-15=

(n)
0

(n), _ (

atly - v “’;co,ao)l >e .

Iv(E("):Eé"),c(n)) - v(E(")rEO.G)| > e .




We have
(n) _(n) aMeint 2 m e 1 E
I~ - - F pas
v'(E:Eo Q ) 3 5~ (EJEO 'Q ) o+ 3 {(n) v (T;Eo Q )dt
"0
(4.2 aMg ) £ 1
(n) _(n), _ 0 (n) 1 _ m (n} (n)
| vIEIES @) 3 € -8 ) + 3 é("> (E = 21)v (E4€ 7 ,a )dr .
0

Prom (3.20), (3.16), (3.23) we see that v(EIEa,n') and v'(E;Eé.a') are bounded

uniformly in (£°',a') in a small neighborhood of (Eo,a) and hence from (4.2), it is
easy to see that {V(Etié"),c("))} and (v'(E:Eén),u

{v(ElESn’.a(n))} and {v'(E!E(n) c(n))} have subsequences converging uniformly.

Suppose they are (V(Erﬁgn).a("))) and {v'(EvEén),a(n))) themselves and
(4.3) lim v(EsE M 0™y = wig), 1w v M aM) - T
ne+e n+eo

From (4.2), (4.3) we get

wiE) =

wif) =

whence w(£) is a solution of

w(E) = v(ErEo,a).

On the other hand, we may

Letting n + @ in (4.1), from

The contradiction means that what we want to prove is true. The proof of Proposition 2 is

complete.

(n))) are equicontinuous. Thus

[i] ’

1

-

af - =
2. % e + % / wh(tar '

! 3

0
GEO 1 2 %
—- (E - 50) + - j (£ = 21)w (1)
2
0

{3.7)-(3.9) ana Ww(E) = w'(£). By uniqueness,

suppose that (E(n)} converges:
um g™ a7,
nee

the uniform convergence we get

1wy - v(E:Eo,a)| >e .

L




Remark. B8So far we have proved that for any Eo <0 and © < 0, there exists a

function v e C‘[EO.")” Cz(Eo,') with Vv{E}) > 0 for F > Eo satisfying (3.7), (3.8),

(3.9). 8ince v(£) 1is hounded and increasing, lim v(£) exists and is positive. Let

[T
s;‘ = lm v(E) ,
E+m
1
. J
us= Vm .
1

Then it is clear that “(—‘VLZ) and Eotz satisfy (2.1)=(2.5) and hence, by Proposition
t

1,

2
u(:;%EJ for x> gt

a for x < Eotz

is a generalized solution of the initial value problem

3u _ a"’nguz
at %2 !

Bo for x> 0
“'t-o =
a for x <0 ,

where A(u) = mx(lul""u,()). The fact that this generalired solution w has a line of
1

discontinuity x = E°t2 shows, in particular, that (1.6) is incorrect.




§5. Existence and Uniqueness for the Free Boundary Problem
Now we return to the free boundary problem (3.7)-(3.10) and state our main results in
the following:
Theorem. The free boundary problem (3.7)-(3.10) has a unique solution (v(E),&o)
with £, < 0 and v(E) e C‘(Eo.’) N Cz(Eo,')- Moreover, if we denote (v{£),E,) by
(v(Era,B),Eo(a,ﬂ)) to express explicitly the dependence on o and 8, then v(f;a,8)
and -EO(G,B) are strictly decreasing in a and strictly increasing in R.
Proof. Denote by v(E:f,) the solution of (3.7)-(3.9) for the moment. For any
Eo < 0, the limit
lim v(E:84) = Y(§,)

E+e0

existas. Let
m
z-{Eo<0;Y(£o)<8}-

From (3.20), (3.21), it is clear that E is nonempty. Let

EO = inf E .
We want to prove
(5.1) Um v(E;€) = y(£) = 8",
£+
Suppose Y(Eo) ¢+ 8™, Denote
(5.2) § = IvEp - 8™ .

From (3.21), (3.23), it is clear that we can choose positive constants cq and ¢y such

that
(5.3) 0 <V EI(EY) < cexpl-c,t) for £ >0
3 E
for &, € [-—2 -2]. Choose £, such that
0 2 2 1
. 2 8
(5.4) cy | expl-cghraE < .
[3
"1
-18-




By the continuous dependence of solutions of (3.7)-(3.9) upon Eo, there exists
ne (0u|50|/2) such that
[
(5.5) v 18 ) ~ vt pE M <
whenever £ € (Eo - n,Eo +nl.
Now for Eo e (Eo - n,!o + n}, 1integrating (5.3) over (51,-) and using (5.4) we

get.

alos

0 < Y(Eo) - v(E1;Eo) <

in particular,

asjon

0 < y(Eo) - v(c,:Eo) <

Hence
= = $
lv(Eo) - Y(Eo)l < Iv(£1:E°) - V(C1!E°)‘ *3

and by (5.5)

N - s
(5.6} |Y(E°) X(!o)l <3 .

if Y(!o) = 3™ - §, then (5.2) and (5.6} imply

m_§
Y(Eo) < g - 3

for £, e (Eo - n,!o + n]. This means that [Eo - n,Eo +n] C E, which contradicts the
definition of .

1t Y(E)) = B% + 8, then (5.2) and (5.6) imply

m,§
Y(Eo) > 87 + 3

for £, e (!o - n;!o + N]. This means that no point on (Eo ~n,6, +nl is in E, which

0
also contradicts the definition of 50-

Therefore (5.1) holds and the existence is proved.

Now we prove the uniqueness. Suppose (3,7)-(3.10) has two solutions (v1(E),E° 1)

and (vz(E),Eo'z) and EO,! 4 Eo'z. (1t 50'1 = 50’2 then, by Proposition 2,

vyl = vz(E))- Then from the relation

1
[ - -1
1 ’ m
(5.7) v'(E) = v'(n )exp(~ { Tv (t)yany ,

[

-19-
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which holds for any solution v(f) of (3.7), it is easily seen that the curves

v = v1(E) and v = vz(E) cannot intersect at any point (n,,vg) with ng 2 0. In fact,
if
v1(n°) = vz(no) = vy .
then we must have
viing) 4 vi(no) '
otherwise the standard uniqueness theorem would imply that v1(E) H vz(i). Suppose
v;(no) > v;(no) .
Then we have, in a right neighborhood of No’
(5.8) v1(€) > vz(E) .
Note that (5.7) implies
(5.9) v;(E) > vé(E)
whenever (5.8) holds. Thus (5.9) would be true for all & > n and hence

0
lim v (£) > lim v, (&),

Evm (22

which is impossible.

In addition, a similar arqument shows that if, for example,

(5.10) vy(0) > vy(0) ,
then
(5.11) vi(0) < vi(0) .

Let £(v) be the inverse function of v(£), v(E) being a solution of (3.7)-(3.10)

which is positive except at £ = EO' Then from (3.7)=(3.9), we obtain

(5.12) A
2
(5.13) Elomg = &g ¢
2
(5.14) E"V‘O - EE— .
0
_20-




If we denote the inverse functions of v1(E) and vz(E) by C’(v) and £z(v), then

from (5.10) we can assert that

(5.15) <

I3
"0,2 }

otherwise there exists Vo 0« vo ¢ v2(0) such that

4
0,1

E‘(v) > Ez(v) for 0 € v < vq, Et(vo) - Ez(vo) ,

and hence, noticing that

2 2
El(o) --——>.——-—-El(o) .
! a8y,1 9,2 2

we may conclude that £(v) = £1(v) - Ez(v) achieves its maximum at a certain point in
(0,vg) where
£E>0, " =0, E"< 0.

On the other hand, from (5.12)

- -t
1 m
EP o E% o E" m o EE' = F K
cY E1 52 2 v ‘:151 ,2’2)
1 % - 1 ; -1
- — - s — V - ]
>m v (E1 52)51 to v 52(51 Ez)
1 1
- -1 s |
1 m 1 m
- — F — £ BV 0
o v .E;+2 v PLAN '

since E; >0, £>0, €' = 0. The contradiction proves (5.15).

By the way, what we have just proved is that the curves v = v1(E) and v = vz(E)
cannot intersect at a point in the halfplane £ < 0.

Now we consider the function £(v) = 51(v) - Ez(v) again on the interval [0,v,(0}).
We have

E;(O) < 55(0)

and from (5.10), (5.11)

' ' = S —~-—1 -
E‘(vz(o)) > 51(V1(0)) v;(O) > vé(o) E&(vz(o)) .
-21~




i
|
|
r
|
|

Therefore the function £(v) = 61(v) - €2(v) on (0,v2(0)1 would achieve its minimum at

some point in (0,v,(0)), which is impossible. This completes the proof of uniqueness.

The rest of the theorem can be proved by a similar argument.
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